2010-08-01から1ヶ月間の記事一覧

3.3 V ノイズジェネレータ (6)

前回述べたように、理想特性でもある、折れ線近似での遷移域 (-3 dB/oct スロープの直線部分) の下端の周波数と上端の周波数との比は「9」になります。 したがって、中心周波数の比を 9 に取った2つのラグ・リード・フィルタをバッファを介して従続接続すれ…

3.3 V ノイズジェネレータ (5)

今回は、前回の結果に対する補足です。 まず、ラグ・リード・フィルタでは、振幅は (広義) 単調減少なので、微係数は常にゼロかマイナスであり、正になることはありません。 しかし、前回求めた の式は、 であり、見かけ上は、式にマイナス符号が含まれてい…

3.3 V ノイズジェネレータ (4)

今回は、左の図のようなラグ・リード・フィルタで、中心周波数付近でゲインのスロープが -3 dB/oct (-10 dB/dec) になる条件を求めてみます。 まず、時定数を とすると、この回路の伝達関数は、 と表されます。

3.3 V ノイズジェネレータ (3)

今回からは、ホワイトノイズをピンクノイズに変換するための -3 dB/oct (-10 dB/dec) の周波数特性を持つフィルタについて扱います。 まずは、実例として、minimoog および moog のモジュラーシンセのピンクノイズフィルタ回路を取り上げます。 LTspice によ…

3.3 V ノイズジェネレータ (2)

ノイズ出力をピンクノイズ化して音を聞き比べたところ、生成多項式 1、2 と、3 との間には明らかな違いが認められました。 それぞれの wave ファイルを mp3 化したものをこちらに置きました。 これは、リアルタイムにノイズ出力にアナログフィルタをかけたの…

3.3 V ノイズジェネレータ (1)

ノイズジェネレータの「定番」といえば、小信号用トランジスタのベース・エミッタ間に逆バイアスをかけ、ブレークダウンさせて「ツェナダイオード」として使い、発生するノイズを増幅する方式が一般的です。 しかし、小信号用トランジスタの VEBO はスペック…

アナログシンセの VCO ブロック (43) -- 温度補償回路(9)

温度補償回路の温度特性を測定してみて、効果があることが確認できました。 予備実験として、トランジスタ・アレイ内のトランジスタを「ヒーター」として利用して温度設定する方法も試してみたのですが、差動ペアのトランジスタ間に無視できない温度勾配が生…

アナログシンセの VCO ブロック (42) -- 温度補償回路(8)

実験回路を組み上げて、回路動作することは確認しました。 温度特性についての確認はこれからです。 回路図を下に示します。